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Dependent Variable as a Multinomial Outcome

Suppose we observe an economic choice that is a binary signal
from amongst M discrete alternatives. The focus on the course is
to estimate parameters to test economic theories and/or predict
the impact of exogenous change due to policy.
Numerous examples:

Regulator’s choice of where to site a hazardous waste
incinerator from among Virginia’s 134 counties and
independent cities.

Student’s choice of which of M colleges to attend (where
M>2).

Individual’s choice from among M different private health care
plans (where M>2).

REI’s choice of where to site their next retail store from
among 366 Metropolitan statistical areas in the US.



Terminology and Definitions

Terminology: The choice set, C , is the set comprised of the M
feasible alternatives that could be chosen. For binary discrete
outcomes, the choice set is C = Yes,No = 1, 0, while for
multinomial outcomes, it is
C = Red ,Blue, . . . ,Orange = 1, 2, . . . ,M.
For each choice alternative m, define a 1× KM vector of
alternative specific independent variables,

xm =
[
xm1 xm2 . . . xmK

]
1×Km

(1)

For each individual i , define a 1× KI vector of individual specific
independent variables,

zi =
[
xi1 xi2 . . . xiK

]
1×KI

(2)

Additionally, we could also define yim as a vector of individual and
alternative specific data, but for brevity we omit this type of
information without ruling it out.



The Random Utility Model (RUM) for Multinomial
Outcomes

In the Multinomial RUM, an individual i looks at the indirect
utility (an index of well-being) of each of the M alternatives and
chooses the best one:

dim =1 if V (xm, zi , εm|β) > V (xj , zi , εj |β) ∀j ∈ C

=0 otherwise

For individual i ,
∑M

m=1 dim = 1, since only one alternative can be
chosen.



The Random Utility Model (RUM): An example

Suppose we observe student i , having characteristics zi considering
M potential universities, each having characteristics xm.Simplify by
assuming M=3 (3 choice alternatives) and a linear in parameters
form for V . So, we observe the individual choosing alternative 3
(di3 = 1) iff

x3βx + ziβz + εi3 > x2βx + ziβz + εi2 and

x3βx + ziβz + εi3 > x1βx + ziβz + εi1

Note: variables that do not vary over the choice alternatives drop
out of the difference, given our linear function. So, we can’t
identify βz .



Econometrics Step 1

As researchers, we can observe zi and/or xm (for all choice
alternatives), but we can’t observe the ε’s. Nor is there a
straightforward way to construct estimated errors as in OLS, since
the multinomial qualitative choice signals if the indirect utility is
higher or not, not the degree to which it is higher. But we can
tackle this problem in a maximum likelihood framework. In a RUM
context, write the probability that individual i choose ‘3’ as

Prob(3) =

Prob ((x3 − x2)βz > εi2 − εi3, (x3 − x1)βz > εi1 − εi3)



Econometrics Step 2

In an analogous manner to what we did before with binary probit
and logit models and letting f (εm) be the pdf for unobservables,

Prob(3|β, ε, x, zi ) =∫ ∞
−∞

∫ (x3−x2)βx+εi3

−∞

∫ (x3−x1)βx+εi3

−∞
f (εi3)f (εi2)f (εi1) . . .

dεi1dεi2dεi3

In words: Given the alternative and individual characteristics and a
guess for β, find the likelihood that a draw of εi3, εi2 and εi1 are
consistent with the observed choice.



Econometrics Step 3: Assume a distribution for the errors

Continuing to assume that ‘3’ was chosen:

Probit :

Prob(3) =

∫ ∞
−∞

∫ (x3−x2)βx+εi3)

−∞

∫ (x3−x1)βx+εi3)

−∞

φ(εi3)φ(εi2)φ(εi1)dεi1dεi2dεi3

Logit : Prob(3) = ex3β

ex1β+ex2β+ex3β

With that, we can construct the log-likelihood over the entire
sample:

ln(L(β|d, xiβ)) =
N∑
i=1

ln

(
M∏

m=1

Prob(m)dim

)
(3)



Interpreting Parameters

Here, the marginal effects can be a bit complicated (all of these
are for the multinomial logit model). For example, how changing
an attribute at one alternative, changes the probability of another
alternative:

∂ln[P(m)]

∂xjk
= −P(j)× P(m)× βk (4)

Or, how changing an attribute at one alternative, changes the
probability of choosing that alternative:

∂ln[P(m)]

∂xmk
= P(m)× βk (5)

And finally,
∂ln[P(m)/P(j)]

∂[xmk − xjk ]
= βk (6)



There is no such thing as a free lunch.

The logit probability is quite easy to work with compared to the
multiple integrals required for the probit model. But, there is some
baggage that comes with it. Inherent in the multinomial logit
model is the IIA property- Independence of Irrelevant Alternatives.
Consider the ratio of any two probabilities, such as P(3)

P(1) :

ex3β

ex1β+ex2β+ex3β

ex1β

ex1β+ex2β+ex3β

=
ex3β

ex1β
(7)

So what?? The β’s estimated in the model must adhere to this
potentially restrictive condition and by extension, preferences and
economic inference may be biased.



IIA Example

Suppose there are 7 health plans an individual might buy. Plans 1-5
are HMO plans while Plans 6 and 7 are PPO. Many people prefer
PPO plans because it offers flexibility in choosing out of network
physicians. Suppose we estimate a multinomial logit model and
obtain the following predicted probabilities for individual i :

Plan P(m) P(m)/P(PPO2)

HMO1 .13 .65
HMO2 .09 .45
HMO3 .14 .7
HMO4 .09 .45
HMO5 .15 .75
PPO1 .2 1
PPO2 .2 1

Total 1



IIA Example, continued

Now suppose that PPO1 is no longer available. How does the
Multinomial Logit and the IIA property reapportion the 20%
likelihood of choosing PPO1 amongst the remaining 6 alternatives?

7 Options Avail. 6 Options Avail.

Plan P(m) P(m)/P(PPO2) P̃(m) P̃(m)/P̃(PPO2)

HMO1 .13 .65 .16 .65

HMO2 .09 .45 .11 .45

HMO3 .14 .70 .18 .70

HMO4 .09 .45 .11 .45

HMO5 .15 .75 .19 .75
PPO1 .20 1.00 N/A N/A

PPO2 .20 1.00 .25 1.00

Total 1 1



Mechanics of IIA

Assume 3 alternatives, with initial probabilities P(1), P(2), and
P(3). Suppose that alternative 2 is eliminated, denote the new
probabilities as P̃(1) and P̃(3). Given the multinomial logit model,
it must be the case that following the elimination of alternative 2,
the following 2 conditions must hold:

Adding Up: P̃(1) + P̃(3) = 1

IIA: P̃(1)

P̃(3)
= P(1)

P(3) , which implies P̃(1) = P̃(3)P(1)
P(3)

Using these, it can be shown that

P̃(3) = P(3)
P(1)+P(3)

P̃(1) = P(1)
P(1)+P(3)



The Nested Logit Model

PPO

Medical Plan 
Choice

HMO

V (HMO1) V (HMO2) V (HMO3) V (HMO4) V (HMO5) V (PPO1) V (PPO2)

V (PPOm) = xm� + zPPO� + ✏PPO
m

V (HMOm) = xm� + zHMO� + ✏HMO
m

Basic Idea: Relax IIA for alternatives in different nests, while
keeping IIA within nests.



Choice Probabilities

The nested logit model writes the probability of choosing the
second PPO alternative, for example, as

P(PPO2) = P(PPO)× P(PPO2|PPO) (8)

where

P(PPO) =
eτPPO(zPPOγ+IV (PPO))

eτPPO(zPPOγ+IV (PPO)) + eτHMO(zHMOγ+IV (HMO))

(9)

P(PPO2|PPO) =
exPPO,2β

exPPO,1β + exPPO,2β
(10)

and IV (B) = ln
[∑

m∈B exB,m
]



What is the role of τ

τPPO and τHMO dictate the degree to which it is easy to substitute
from alternatives within one branch to alternatives in another
branch. It can be shown that the IIA property

1 Is imposed for alternatives within a branch

2 Is relaxed (does not hold) for alternatives across branches

If τPPO = τHMO = 1, then the nested logit collapses to the
multinomial logit model. Therefore, the suitability of the IIA
property can be tested in a maximum likelihood framework:

H0: τPPO = τHMO = 1

H1: τPPO 6= τHMO 6= 1

Using a likelihood ratio test χ2, in this case having 2 degrees of
freedom since we have two restrictions.



Practical Issues and Extensions

For large M, the clogit model is almost universally used (more
than 10 choice alternatives)

Stata has two multinomial logit commands: mlogit and clogit.
Mlogit is consistent with the varying parameters model and
clogit with the RUM model.

The R command mlogit handles both types of models

Some other extensions (also relevant for the binary Probit and
Logit models):

1 Random Parameters (or mixed models) that relax IIA
2 Heteroskedastic error models
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