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Censoring, truncation, and sample selection

Occurs when a large portion of our sample’s dependent variable is
stacked on a particular value (often the value ‘0’)[censoring], not
measured at all[truncated], or not measured by a selection
mechanism [sample selection]

We don’t observe anything if the dependent variable if the
individual falls below (or above) a threshold level (truncation)
Example: We only observe firm’s profits if they are positive.

We only observe a lower (or upper) threshold value for all
dependent variables in sample if the “true” dependent variable
is below (or above) a critical value (censoring).
Example:The highest grade level I can assign is an “A”.
Different students may have different capabilities, but all the
top students receive an “A”.

For these kinds of problems, we will explore the truncated
regression, the Tobit, and the Heckman models.
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Types of Censoring/Truncations

The data has “meaningful” levels of observations being ‘stacked’
on some critical value of the dependent variable. This can take
several forms:

Lower Truncation: Wages are observed only if they are above
minimum wage.

Upper Censoring: Jury awards capped at $5 million dollars.

Lower and Upper Truncation: Only children in the middle of
the class (± 1 Standard Deviation) are selected for an
educational program.

3 / 27



OLS and Truncation Problems

Think of truncation as a sample selection issue: we only observe
some part of the full sample. Three cases for consideration:

1 Sample is selected purely by random chance: OLS unbiased

2 Sample is selected based on value of x: OLS unbiased

E [εi |X , s(X )] =E [εi |X , s(X )]

=E [εi |X ]

=0

3 Sample is selected based on Y: OLS biased.

E [εi |X , s(Y > a)] =E [εi |X ,Y ≥ a]

=E [εi |X ,Xβ + ε ≥ a]

6=0
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Properties of Truncated Distributions

The PDF of a truncated distribution for the variable y can be
written as (for Lower Truncation/Censoring)

f (y |y > a) =
f (y)

Prob(y > a)
(1)

Most applications are based off the truncated normal distribution,
making this expression:

f (y |y > a) =
1
σφ
( y−µ

σ

)
1− Φ(a−µσ )

(2)

Note: Truncated Poissons have also been used for truncated count
data problems.
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a x

Prob(y > a) =1−
∫ a

−∞
f (y)dy (3)

=1− Φ

(
a− µ
σ

)
(4)
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Figure: Truncated Normal
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The expected value of a truncated distribution

Since we only observe y if y exceeds a, we can write

E (y |y > a) =

∫ ∞
a

yf (y |y > a)dy (5)

=

∫ ∞
a

y

[
1
σφ( y−µσ )

1− Φ(a−µσ )

]
dy (6)

=µ+ σ
φ(a−µσ )

1− Φ(a−µσ )
(7)

Note, the expected value of a truncated distribution is always
greater (when truncated from below) than the non-truncated mean
µ. It can also be shown that the variance of any truncated
distribution is smaller than the variance of the non-truncated
distribution σ2.
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Mills Ratio

The term
φ( a−µ

σ
)

1−Φ( a−µ
σ

)
is known as the inverse of Mill’s Ratio (or the

Hazard Function) and provides information on the relevancy of the
degree of truncation in the data. As the inverse of Mill’s ratio gets
larger, the mean of the truncated distribution diverges from the
mean of the underlying full distribution. This occurs as the

1 Denominator gets smaller and smaller (as Prob(y > a)→ 0),
or

2 µ occurs closer to the truncation point a.
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Truncated Regression

If truncation is relevant, then an OLS model of the mean of a
dependent variable is biased!! Instead, model the
individual-specific mean of the truncated normal distribution as

µi = xiβ (8)

where we are trying to uncover the relationship in the population
regression model:

y = xβ + ε (9)

But since we have a truncation problem, we need to write

E (yi |yi > a) = xiβ + σ
φ(a−xiβσ )

1− Φ(a−xiβσ )
(10)
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Likelihood Function for Truncated Regression Model

L =
N∏
i=1

1
σφ
(
yi−xiβ
σ

)
1− Φ(αi )

(11)

Where

1 αi = a−xiβ
σ

2 Φ(.) and φ(.) is the standard normal CDF and PDF
respectively.

The log-likelihood is often expressed as:

LnL =
N∑
i=1

[
log

(
1

σ
φ

(
yi − xiβ

σ

))
− log(1− Φ(αi ))

]
(12)
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Figure: Truncated Data and Performance of OLS

Source: Schmidheiny.
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Censoring

Note: Demand may have been higher for a game, but if so
reported = Capacity
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Model Setup

Here, we consider lower censoring at ‘a’. This can be generalized
to any type of censoring. Let y∗i reflect the unobserved dependent
variable having the following relationship:

y∗i = xiβ + εi (13)

Except now we have a censoring problem, where the observed
dependent variable, yi is:

yi =a if y∗i ≤ a (14)

=y∗i if y∗i > a (15)
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Expected Value of a Censored Variable

In general denote the lower censoring point as ‘a’

E (yi ) =prob(yi = a)× E (yi |yi = a) (16)

+ prob(yi > a)× E (yi |yi > a) (17)

=prob(y∗i ≤ a)× a + prob(y∗i > a)× E (y∗i |y∗i > a) (18)

=Φ

(
a− µ
σ

)
a +

(
1− Φ

(
a− µ
σ

))[
µ+ σ

φ(a−µσ )

1− Φ(a−µσ )

]
(19)

Note: the expression inside the large brackets is identical to that of
a truncated distribution. Also note that in the censored regression
model (The Tobit), we model µi = xiβ.
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The Tobit Model

This framework leads us to the Tobit model, where (for the case of
a=0) we can write the expected value of our dependent variable as

E (yi |xi ) =

(
1− Φ

(
0− xiβ

σ

))(
xiβ + σ

φ( 0−xiβ
σ )

1− Φ( 0−xiβ
σ )

)
(20)
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Likelihood Function for Tobit Censored Regression Model

lnL =
N∑
i=1

[
di ln

[
1

σ
φ

(
yi − xiβ

σ

)]
+ (1− di )ln

[
1− Φ

(
xiβ − a

σ

)]]
(21)
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Figure: Censored Data and Performance of OLS

Source: Schmidheiny.

18 / 27



A Sample Selection Model

Consider a sample of women, some working and some not. We
would like to estimate a labor supply equation for women, but
want to be careful about non-working women. If we examine only
those in the labor market, it may lead to results that at best are
only applicable to the working population of women and at worst
are biased!!
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Model Setup

Consider a working/not working selection equation and, conditional
on working, a wage equation.
Selection Equation:

z∗i = wiγ + ui , zi = 1 if z∗i > 0 and 0 otherwise (22)

Prob(zi = 1|wi ) = Φ(wiγ) (23)

Prob(zi = 0|wi ) = 1− Φ(wiγ) (24)

Wage equation:

yi = xiβ + εi observed if , zi = 1 (25)

(ui , εi ) ∼ Bivariate Normal(0, 0, 1, σε, ρ) (26)
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Conditional Expected Value of yi in this setting

E (yi |yi observed) =E (yi |z∗i > 0) (27)

=E (yi |ui > −wiγ) (28)

=xiβ + E (εi |ui > −wiγ) (29)

=xiβ + ρσε
φ(wiγ)

Φ(wiγ)
(30)

where the Cov(εi , ui ) = ρ.
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The Unconditional Expected Value of yi in this setting

First, we need to define the selection probability:

P(yi observed) = Φ(wiγ) (31)

Then, the unconditional Expected value of yi is

E (yi ) =Prob(yi observed)E (yi |z∗i > 0) (32)

=Φ(wiγ)

[
xiβ + ρσε

φ(wiγ)

Φ(wiγ)

]
(33)

Note: The unconditional expectation of E [y∗i ] (the full uncensored
distribution is xiβ). Green argues that for many contexts this
won’t be useful since we never observe y∗ below the censoring
point. There may be some applications where E [y∗i ] is useful.
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Marginal Effects and Stata

Note, there are several types of marginal effects one might
consider:

1 The unconditional marginal effect: how y∗i changes as xk
changes

2 The conditional marginal effect: how yi changes as xk changes

3 The probability of censoring marginal effect: how Φ changes
as wk changes

Make sure you know what stata is reporting when running mfx.
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Mechanics of z and x

Very important point about the Heckman Model:

wi and xi may have some overlapping regressors. There must
be some regressor that identifies the selection mechanism
independent of the effect in the equation of interest to
properly identify a model.

Unlike the truncated regression model, we run this over the
full sample of observations.

24 / 27



Likelihood Function for Heckman Sample Selection
Regression Model

L =
N∏
i=1

[
1

σ
φ

(
yi − xib

σ

)
Φ

(
wiγ + ρ( yi−xibσ )√

1− ρ2

)]di
×

[(1− Φ (wiγ)](1−di ) (34)

Note: Take the log of this expression for the log-likelihood:

LL =
N∑
i=1

di log

[
1

σ
φ

(
yi − xib

σ

)
Φ

(
wiγ + ρ( yi−xibσ )√

1− ρ2

)]
+

(1− di )log [(1− Φ (wiγ)] (35)
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Summary of Models

Rules of thumb for various models:

If data exists for the entire sample (over the complete range
of the DV) but the value of the dependent variable is
transformed to some lower or upper limit because of an
exogenous data collection rule, then the Tobit is the model to
use.

If data exists for only some subset of your sample based on
values of the dependent variable and this was done based on
an exogenous data collection rule, then the truncated
regression model is appropriate.

If data exists for the dependent variable on only some subset
of your sample based on a sample selection rule, then the
Heckman regression model is appropriate. This regression is
run over the full sample of data.

Note:usually we are in a Tobit or Heckman world for most
economic data.
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Summary of Models, Cont.

The Heckman Model allows the sample selection probability
to have different regressors than the “continuous” equation
for the dependent variable values that are not censored.

The Tobit Model restricts the regressors in the censoring and
“continuous” equation to be the same.

The Truncated regression ignores sample selection and only
leverages the “continuous” equation for recovering β

If important economic phenomena occuring at the censoring
point or there is endogenous selection, then the truncated
regression model will lead to biased estimates of β.
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