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Dependent Variable as a Binary Outcome

Suppose we observe an economic choice that is a binary signal.
The focus on the course is to estimate parameters to test
economic theories and/or predict the impact of exogenous change
due to policy.
An important starting point is the idea of a conceptual choice
model. There are two primary classes of models:

Random Utility or Discrete Choice Model: individual examines
how x’s vary across the state of the world if ‘yes’ versus ‘no’.

Varying Parameters Model: State of the world doesn’t vary
over the ‘yes’ and ‘no’, but the individual’s behavioral
parameters vary if yes versus no.



The Random Utility Model (RUM)

Imagine observing a binary signal of the form [Yes,No] or
[True,False]. By convention, we will always code our dependent
variable di = 1 if Yes or True and di = 0 if No or False.

In the RUM, an individual i looks at the indirect utility (an index
of well-being) of yes and no:

di =1 if V (Xi ,Yes , εyes |β) > V (Xi ,No , εNo |β)

0 if V (Xi ,No , εNo |β) > V (Xi ,Yes , εYes |β)

I will refer to the ‘Yes’ and ‘No’ conditions, the choice alternatives.



The Random Utility Model (RUM): An example

Suppose we observe potential lottery ticket buyer for a lottery
ticket costing c . The individual has income Yi and if she purchases
will receive expected payouts P, and if not will receive expected
payout 0. Assume that there are other factors, Zi that are
individual characteristics that are observed such as age and other
demographic information.

For simplicity, suppose the individual’s indirect utility is linear in
parameters:

V (Xi ,Yes , εi ,yes |β) =βY (Yi − c) + βPP + βZZi + εi ,Yes

V (Xi ,No , εi ,No |β) =βY (Yi − 0) + βP0 + βZZi + εi ,No

Simplify this to find the condition of V (Yes) > V (No).



Characterizing the Choice

So, we observe the individual voting yes (di = 1) iff

βY (Yi − c) + βRR + βZZi + εi ,Yes >

βY (Yi − 0) + βR0 + βZZi + εi ,No

βY (Yi − c)− βY (Yi − 0) + βRR − βR0+

βZZi − βZZi > εi ,No − εi ,Yes

−βY c + βRR > εi ,No − εi ,Yes (1)

Note: variables that do not vary over the choice alternatives drop
out of the difference, given our linear function.



The Varying Parameters Model

The varying parameters departs from the RUM in an important
way. Here, variation in individual attributes is assumed to be the
important determinant driving the individual’s decision to purchase
or not.



Allow parameters to vary over the choice alternative

Suppose instead, we focus on the vector of socio-demographic
characteristics Zi . The individual’s choice of purchasing a ticket
depends on those characteristics alone. Suppose there are two
characteristics in Zi : age (Ai ) and income (Yi ). An individual
would vote ‘Yes’ iff

βageYesAi + βYYesYi + εi ,Yes > βageNo Ai + βYNoYi + εi ,No



Varying Parameters, cont.

In the binary case we consider here, the individual purchases if

(βageYes − β
age
No )Ai + (βYYes − βYNo)Yi > εi ,No − εi ,Yes

But when we estimate the model, we can’t identify all these
parameters, rather only:

βageAi + βYYi > εi ,No − εi ,Yes

where βage = βageYes − β
age
No and βY = βYYes − βYNo . If there are J

choice alternatives, we will recover J − 1 sets of the K parameters-
they are all normalized on one choice alternative.



Econometrics Step 1
As researchers, we can observe Zi and/or Xik (for all choice
alternatives), but we can’t observe the ε’s. Nor is there a
straightforward way to construct estimated errors as in OLS. Since
the binary variable signals if the indirect utility is higher or not, not
the degree to which it is higher. But we can tackle this problem in
a maximum likelihood framework. In a RUM context, write the
probability that individual i choose ‘Yes’ as

Prob(Yes|β, ε,XYes ,XNo ,Zi ) = Prob(−βY c +βPP > εi ,No − εi ,Yes)
(2)

Or, we can write a similar expression in a Varying Parameter
Context:

Prob(Yes|β, ε,XYes ,XNo ,Zi ) = Prob(βageAi+β
YYi > εi ,No−εi ,Yes)

(3)
Note: the remainder of this presentation only presents the RUM
model, but the results can easily be extended to the varying
parameters framework.



Econometrics Step 2

Following Greene rewrite our RUM condition,

Prob(−βY c + βPP > εi ,No − εi ,Yes)

Prob(xiβ > εi ,No − εi ,Yes) (4)



So we need a probability model that assigns low probability if xiβ
is small and higher probabilities if xiβ is large. Formally, we want

lim
xiβ→+∞

Prob(di = 1|xiβ) = 1

lim
xiβ→−∞

Prob(di = 1|xiβ) = 0

Figure: Plot of CDF



Econometrics Step 3

Since by definition, a probability is bounded by [0,1] we can use
maximum likelihood estimation to recover the estimates for β.
Common practice is to assume that the errors are i.i.d. Normal
(Probit) or Logistic (Logit) distributed.

Figure: Plots of the pdf



The Likelihood Function

Probit : Prob(di = 1|xi ) =
∫ xiβ
−∞ φ(t)dt = Φ(xiβ)

Logit : Prob(di = 1|xi ) =
∫ xiβ
−∞ f (t)dt = exiβ

1+exiβ

With that, it is easy to construct the log-likelihood over the entire
sample:

ln(L(β|d, xiβ)) =
N∑
i=1

ln[Prob(di = 1|xiβ)× (di )+

(1− Prob(di = 1|xiβ))× (1− di )]

Show:

1 If Logit and di = 1, person i’s contribution to the likelihood
function.

2 If Logit and di = 0, person i’s contribution to the likelihood
function.

3 Item (2) can be written as 1
1+exiβ



Interpreting Parameters

We have focused on marginal effects and elasticities for the models
in the class. In an OLS setting, marginal effects are

∂E (y|x)

∂x
(5)

For all of the models considered thus far, our estimated parameters
are our marginal effects. Here, since the expected value of di is:

E (di |xi) = 0× (1− Prob(di = 1|xi )) + 1× Prob(di = 1|xi )

The marginal effect for individual i and regressor K is

∂E (di |xiK )

∂xiK
= f (xiβ)βK

or, how the probability of choosing ‘Yes’ changes when the value of
xiK changes.



Job Choice Example from Mroz

Focus on the decision to be “Working” or “Not Working”.

Figure: Actual Working Hours (WHRS)



A Discrete Model of Labor Force Participation

Specify a model to explain the variable lfp = 1 if the woman
worked in 1975, = 0 if not. The Data:



From Mroz: Comparing OLS, Probit, and Logit

The OLS model is sometimes called the Linear Probability Model
and can perform fairly well in a wide variety of settings. The
problems with the OLS in this case is:

1 The predicted value from an OLS regression
(d̂ = x(x′x)−1x′y = x(x′x)−1x′d is not constrained in the
interval [0,1].

2 The estimated marginal effect, ∂E(d̂|x)
∂x = b

3 Errors can’t be normally distributed

4 Errors are heteroskedastic

BUT: OLS estimates are unbiased.



From Mroz: Comparing OLS, Probit, and Logit

(1) (2) (3)
VARIABLES OLS Probit Logit

kl6 -0.296*** -0.830*** -1.367***
(0.0367) (0.110) (0.189)

k618 -0.0262* -0.0796** -0.130**
(0.0142) (0.0397) (0.0654)

faminc 4.14e-06*** 1.12e-05*** 1.89e-05***
(1.41e-06) (3.94e-06) (6.74e-06)

wa -0.0153*** -0.0429*** -0.0700***
(0.00257) (0.00736) (0.0122)

Constant 1.228*** 2.054*** 3.331***
(0.126) (0.364) (0.607)

Observations 753 753 753
R-squared 0.097

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1



Comparing OLS, Logit and Probit, cont.

The models tell a consistent story for signs and significant
parameters.

To compare models, use the approximation

Logit-OLS: Scale the logit coefficients by .25:
bolseduc ∼ blogiteduc × .25
Probit-OLS: Scale the probit coefficients by .4:
bolseduc ∼ bprobiteduc × .4
Logit-Probit: Scale the logit coefficient by .6:
bprobiteduc ∼ blogiteduc × .6



Marginal Effects for Children < 6

# of children OLS Probit Logit

0 -.296 -.308 -.311
1 -.296 -.299 -.298
2 -.296 -.146 -.131
3 -.296 -.036 -.039



Endogeneity

The probit model can be used to test for endogeneity. For
example, in the Mroz data we could see if the variable we (wife’s
education) is endogenous. The steps for testing for H0: Exogenous
Regressor is as before.

Pick a candidate instrument and test for relevancy

If relevant, include in regression and then test for exogeneity

The stata command ivprobit will run this regression and test for
exogeneity of the regressor.
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