
Ordinary Least Squares Regression



Goals for this unit

I More on notation and terminology
I OLS scalar versus matrix derivation



Some Preliminaries

In this class we will be learning to analyze

I Cross Section Data
I Panel Data (Longitudinal Data)
I Time Series Data is ignored in this class (take ECON 408)



Cross Section Data

Information at a point in time for N individuals, firms, or economic
units.

id year wage education experience

1 1996 15 12 10
2 1996 23 14 8
: : : : :
: : : : :
99 1996 9 10 2
100 1996 54 16 15



Balanced Panel Data
Information at T points in time for each of N individuals, firms, or
economic units.

id year wage education experience
1 1996 15 12 10
1 1997 17 12 11
1 1998 20 12 12
2 1996 23 14 8
2 1997 20 15 9
2 1998 21 15 10
: : : : :
: : : : :
99 1996 9 10 2
99 1997 13 10 3
99 1998 15 10 4
100 1996 54 16 15
100 1997 58 17 16
100 1998 74 18 17

Here T = 3 (indexed by years) and N=100 (indexed by id)



Unbalanced Panel Data
Information on up to T points in time for each of N individuals,
firms, or economic units.

id year wage education experience
1 1997 17 12 11
1 1998 25 12 12
2 1996 23 14 8
2 1998 21 15 10
...

...
...

...
...

...
...

...
...

...
99 1996 9 10 2
99 1997 13 10 3
99 1998 15 10 4
100 1996 58 17 16
100 1997 74 18 17

Here T = 3 (indexed by years) and N=100 (indexed by id)



Time Series Data (Not Covered)

id year wage education experience

1 1986 15 12 8
1 1987 17 12 9
: : : : :
: : : : :
1 2005 33 13 27
1 2006 35 13 28

Here T = 20 (indexed by years) and N=1 (indexed by id)



Yardsticks

I Unbiased: E [b] = β

I Consistent: E [b]→ β, as N approaches ∞



Yardsticks, cont.

I Efficiency: The estimator uses all information at hand for the
best estimate of β and the variance/covariance matrix.

“An estimator is asymptotically efficient if it is consistent,
asymptotically normally distributed, and has an asymptotic
covariance that is not larger than the asymptotic covariance matrix
of any other consistent, asymptotically distributed estimator.”



OLS

Consider a situation where we want to test a hypothesis about
economic behavior or some type of economic phenomena.

I What are the returns to education?
I How do premiums impact choice of Obamacare?

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi



OLS and linear algebra



y1
...
yi
...

yN


=



1 x11 x12 x13
...

...
...

...
1 xi1 xi2 xi3
...

...
...

...
1 xN1 xN2 xN3


×


β0
β1
β2
β3

 +



ε1
...
εi
...
εN


(1)



Exercise

I Check for conformability
I Show that any row in the above relationship can be written

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi (2)

I Why is a column of ones needed in x?



OLS and linear algebra, cont.



y1
...
yi
...

yN


N×1

=



1 x11 x12 x13
...

...
...

...
1 xi1 xi2 xi3
...

...
...

...
1 xN1 xN2 xN3


N×4

×


β0
β1
β2
β3


4×1

+



ε1
...
εi
...
εN


N×1



Estimation Problem

I For most empirical research in the Social Sciences, interested in
marginal effects or elasticities. The ME are:

∂yi
∂xik

= βk

I Don’t know β or ε.
I However, given an estimate for β (b), we can construct

estimates for εi (ei) as

ei = yi − (b0 + b1xi1 + b2xi2 + b3xi3) = yi − xib

where xi =
[
1 xi1 xi2 xi3

]



Visualizing OLS

Note that for every point,

yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi = b0 + b1xi1 + b2xi2 + b3xi3 + ei

Or, for all points
y = xβ + ε = xb + e



Choosing b

One way to calculate b is to minimize the sum squared errors (SSE):

n∑
i=1

(ei)2 =
n∑

i=1
(yi − (b0 + b1xi1 + b2xi2 + b3xi3))2

Exercise: show that
∑n

i=1(ei)2 is equivalent to

(y− xb)′(y− xb) = e′e



The Minimization Problem

minb SSE (b)

minb e′e

Simplifying and using the inner product rule:

min
b

y′y− 2y′xb + b′x′xb



The Minimization Problem

minb SSE (b)

minb e′e

Simplifying and using the inner product rule:

min
b

y′y− 2y′xb + b′x′xb



First order conditions:

∂S
∂b = −2x′y + 2x′xb = 0

can be simplified to solve for the OLS estimator b

b = (x′x)−1x′y



First order conditions:

∂S
∂b = −2x′y + 2x′xb = 0

can be simplified to solve for the OLS estimator b

b = (x′x)−1x′y



What have we just solved for?



Implementation in Stata



Some Assumptions we will use for deriving model

Recall the assumptions in the classic multiple regression model:

1. Linear in parameters
2. There is no linear relationships between the columns in the

matrix x
3. Exogeneity of the independent variables:

E [εi |xj1, xj2, . . . , xj3] = 0, for all j . This condition ensures that
the independent variables for observation i, or for any other
observation are not useful for predicting the disturbance terms
in the model.

4. Homoskedasticity and no autocorrelation: E [εi |εj ] ∀j ∈ n and
share the same variance σ2.

5. Disturbance terms are normally distributed, and given condition
(3) and (4): ε ∼ N(0, σ2I)



Properties: Unbiased

Is E (b) = β?

E (b) = E [(x′x)−1x′y]
= E [(x′x)−1x′(xβ + ε)]
= E [(x′x)−1x′xβ + (x′x)−1x′ε]
= β + E [(x′x)−1x′ε]

(3)

Need E [x′ε] = 0. Two equivalent ways to think about this:

1. Errors uncorrelated with independent variables.
2. Independent variables have no useful information for predicting

errors.
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Properties: For unbiased b need E [x′ε] = 0

Implications:

If errors correlated with independent variables we have endogeneity
and the results are biased.

Exercise: investigate dimensions of E [x′ε] = 0



Properties: Variance of the estimator

I The variance of any random variable (scalar) is defined as

Var(a) = E [(a − E (a))2]
= E [(a − µa)2]

I We are interested in the variance/covariance relationship
between elements of our estimated vector b in order to perform
statistical inference on our parameter estimates. The definition
of a variance/covariance matrix for a random vector b is

Var(b) =E [(b− E[b])(b− E[b])′]
=E [(b− β)(b− β)′]

Exercise: what are dimensions?



Properties: Variance of the estimator, cont.

Var(b) = E [(b− β)(b− β)′]
= E [((x′x)−1x′y− β)((x′x)−1x′y− β)′]

substitute y = xβ + ε, check for conformability and simplify.



Properties: Variance of the estimator, cont.

Var(b) = (x′x)−1x′E [εε′]x((x′x)−1)′

= (x′x)−1x′E [εε′]x(x′x)−1

To simplify further, we invoke the assumption above
(ε ∼ N(0, σ2I)), so that E [εε′] = σ2I.

Exercise: simplify Var(b) further.



Properties: Variance of the estimator, cont.

Finally, we have

Var(b) = σ2(x′x)−1k×k

I refer to this as the Variance/Covariance Matrix of the
Parameters.



How to recover σ2?

I σ2 is the variance of the error. Given assumption (3), errors are
homoskedastic- shared by everyone in the population.

I σ2 is unobserved, but estimate it by using estimated errors for
each observation and recover sample average

s2 = e′e
N − K = (y− xb)′(y− xb)

N − K



Estimated Variance/Covariance Matrix of Parameters

var(b) = s2(x′x)−1

Use diagonal elements of this matrix for the variance of each
parameter estimated in the model:

Var [b] = s2(x′x)−1 = s2


0.0665 −0.0042 −0.0035 −0.0014
−0.0042 0.5655 0.0591 −0.0197
−0.0035 0.0591 0.0205 −0.0046
−0.0014 −0.0197 −0.0046 0.0015


So, the standard error from our regression for b0 (assumed to be the
first parameter) is

√
s2 × .0665



Implement in Stata



Heteroskedasticity



Testing for Heterskedasticity

I The symptoms of Heteroskedasticity are embodied in the
relationship between the linear predictor xb and the estimated
error.

I Idea: see if the variances of the estimated model errors (e) are
a function of the independent variables (x)



Testing for Heterskedasticity: What stata does (estat
hettest)

I Step 1: Recover model residuals (e = y− xb) and predictions
(ŷ = xb).

I Step 2: Using the residuals, calculate

r = diagonal(ee′)
1
N (y− xb)′(y− xb)

I Step 3: Run the regression r = δ0 + δ1ŷ + v, and recover the
Model Sum of Squares (MSS): (̂r −—̂r)′(̂r −—̂r)

I Step 4: Using the MSS
2 (distributed χ2(1)), perform the

following hypothesis test:
I H0 : No Heteroskedasticity: σ2

i = σ2 ∀i ∈ N
I H1 : Heteroskedasticity: σ2

i 6= σ2 ∀i ∈ N



The Fix

-Remember back to our proof

Var(b) = (x′x)−1x′E [εε′]x(x′x)−1

-OLS assumes we can estimate Var(ε) as

var(e) = s2 × IN×N =


s2 0 0 . . . 0
0 s2 0 . . . 0
0 0 s2 . . . 0
...

...
... . . . ...

0 0 0 . . . s2





The Fix, cont.

For robust standard errors, use this

var(e) = V̂ =


s2
1 0 0 . . . 0
0 s2

2 0 . . . 0
0 0 s2

3 . . . 0
...

...
... . . . ...

0 0 0 . . . s2
N


where

si = ei = yi − xib = yi − ŷi



Robust Standard Errors

The robust standard error variance covariance matrix is then:

Var(b) = (x′x)−1x′V̂x(x′x)−1

Notice we use information in the estimated error to fix the
Heteroskedasticity problem.

Things to reflect on:

1. Should we always use robust standard errors?
2. We are able to leverage estimated errors in this way because b

is unbiased in the presence of heteroskedasticity. Therefore, our
estimates for εi are unbiased.


