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So far our Dependent Variable is Continuous

That is, our outcome variable Y is assumed to follow a normal
distribution having mean xb with variance/covariance σ2I. Many
economic phenomena do not necessarily fit this story
Examples:

I Foreign Aid Allocation: Many countries receive aid money and
many do not.

I Labor Supply: In your homework, over 1/3 of your sample
worked zero hours

I Unemployment claims: The duration of time on the
unemployment roles is left skewed and not normal

I Bankruptcy: examining household bankruptcies reveals
households are in 1 or 2 categories: bankrupt or not

I School choice: Students pick one of many schools

An important difference here, is that we can’t use the model errors
as we have so far in the class.
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A focus on the Job Choice Example from Mroz
Suppose you estimate the model on the full sample and calculate
Ŷ = xb. Compare to Y

Figure: Actual Working Hours (Y)

Figure: Predicted Working Hours (Ŷ)



Censoring, Truncation, and Sample Selection

The preceding example comes from problems arising from
censoring/truncation. In effect part of our dependent variable is
continous, but a large portion of our sample is stacked on a
particular value (e.g. ‘0’ in our example)

I We don’t observe the dependent variable if the individual falls
below (or above) a threshold level (truncation)
Example: We only observe profits if they are positive.
Otherwise, they were negative or zero.

I We don’t observe a lower (or upper) threshold value for the
dependent variable if the “true” dependent variable is below a
critical value (censoring)
Example:The lowest grade level I can assign is an “F”.
Different students may have different capabilities (albeit not
good), but all receive an “F”.

For these kinds of problems, use the Tobit or Heckman models.



Dichotomous Choice

Consider a model of the unemployed. Some look for work and
some may not. In this case the dependent variable is binary
(1=Looking for work, 0=not looking for work).
In this case, we model the probability that an individual i is looking
for work as

Prob(i ∈ looking) =

∫ ∞
−∞

f (xiβ|εi )dεi (1)

Usual assumptions about the error lead to the Probit (based on the
Normal Distribution) or the Logit (based on Generalized Extreme
Value Type I).



Multinomial Choice- Choosing among K alternatives

Consider a firm siting decision among K communities. Each
community may offer different tax packages, have different
amenities, etc. The firm’s choice is from among one of the K sites.
Now the probability that firm i chooses community k is

Prob(k|i) =∫∞
−∞ . . .

∫∞
−∞ . . .

∫∞
−∞ f (xi1β, . . . , xikβ, . . . , xiKβ|ε)dε

Usual assumptions about the error lead to the multinomial probit
(based on the Normal Distribution) or the multinomial logit (based
on Generalized Extreme Value Type I).



Modeling the duration of economic events

Suppose you are interested in the duration of recession i (di ). The
probability that a recession is less than 1 year long is

Prob(0 < di < 12) =

∫ 12

0
f (xib|ε, t)dt (2)

The function f (.) is called the hazard function, and this
methodology was adapted from survival analysis from the
biological literature.



A Monte Carlo Experiment

I have performed a Monte Carlo experiment following this setup.
Data Generation Process for N = 1000:

1. Generate vector x of independent variables

2. Generate the vector ε where ε is distributed N(0, σ2I ).

3. Calculate “True” Dependent Variable as
yN×1 = 5 + .5xN×1 + εN×1

4. Calculate Observed Independent Variable (Y ∗) as
I Y ∗ = Y if Y > 7.25
I Y ∗ = 7.25 if Y ≤ 7.25









BIG FAIL for OLS, IV Estimation, and

Traditional Panel Estimators



The Maximum Likelihood Approach

The idea:

I Assume a functional form and distribution for the model errors

I For each observation, construct the probability of observing
the dependent variable yi conditional on model parameters b

I Construct the Log-Likelihood Value

I Search over values for model parameters b that maximizes the
sum of the Log-Likelihood Values



MLE: Formal Setup

Consider a sample y =
[
y1 . . . yi . . . yN

]
from the

population. The probability density function (or pdf) of the
random variables yi conditioned on parameters θ is given by
f (yi , θ). The joint density of n individually and identically
distributed observation is

[
y1 . . . yi . . . yN

]
f (y, θ) =

N∏
i=1

f (yi , θ) = L(θ|y) (3)

is often termed the Likelihood Function and the approach is
termed Maximum Likelihood Estimation (MLE).



MLE: Our Example

In our excel spreadsheet example,

f (yi , θ) = f (yi , µ|σ2 = 1) =
1√

2πσ2
e

−(yi−µ)2

2σ2 (4)

It is common practice to work with the Log-Likelihood Function
(better numerical properties for computing):

ln(L(θ|y)) =
N∑
i=1

ln

(
1√

2πσ2
e

−(yi−µ)2

2σ2

)
(5)

We showed how changing the values of µ, allowed us to find the
maximum log-likelihood value for the mean of our random
variables y. Hence the term maximum likelihood.



A special case: MLE and OLS

Recalling that in an OLS context, y = xb + ε. Put another way,
y ∼ N(xβ, σ2I). We can express this in a log likelihood context as

f (yi |β, σ2, xi ) =
1√

2πσ2
e

−(yi−xiβ)
2

2σ2 (6)

Here we estimate the K β parameters and σ2. By finding the
K + 1 parameter values that maximize the log likelihood function.
The maximumum likelihood estimator bMLE and s2MLE are exactly
equivalent to their OLS counterparts bOLS and s2OLS



Characterizing the “Maximum” Likelihood

In order to be assured of an optimal parameter vector bmle , we
need the following conditions to hold:

1. dln(L(θ|y ,x))
dθ = 0

2. d2ln(L(θ|y ,x))
dθ2

< 0

When taking this approach to the data, the optimization algorithm
in stata evaluates the first and second derivates of the
log-likelihood function to “climb” the hill to the topmost point
representing the maximum likelihood. These conditions ignore
local versus global concavity issues.



Properties of MLE

The Maximum Likelihood Estimator has the following properties

I Consistency: plim(θ̂) = θ

I Asymptotic Normality: θ̂ ∼ N(θ, I (θ)−1)

I Asymptotic Efficiency: θ̂ is asymptotically efficient and
achieves the Rao-Cramer Lower Bound for consistent
estimators (minimum variance estimator).

I Invariance: The MLE of δ = c(θ) is c(θ̂) if c(θ) is a
continuous differentiable function.

These properties are roughly analogous to the BLUE properties of
OLS. The importance of asymptotics looms large.



Hypothesis Testing in MLE: The Information Matrix

The variance/covariance matrix of the parameters θ in an MLE
framework depend on

I (θ) = −1× ∂2lnL(θ)

∂θ∂θ′
(7)

and can be estimated by using our estimated parameter vector θ:

I (θ̂) = −1× ∂2lnL(θ̂)

∂θ̂∂θ̂′
(8)

The inverse of this matrix is our estimated variance covariance
matrix for the parameters with standard errors for parameter i

equal to s.e.(i) =
√
I (θ̂ii )−1



OLS equivalence of var/covariance matrix of the
parameters

Suppose we estimate an OLS model over N observations and 4
parameters. The variance covariance matrix of the parameters can
be written

s2(x′x)−1 = s2


0.0665 −0.0042 −0.0035 −0.0014

−0.0042 0.5655 0.0591 −0.0197

−0.0035 0.0591 0.0205 −0.0046

−0.0014 −0.0197 −0.0046 0.0015

 (9)

it can be shown that the first K × K rows and columns of I (θ̂) has
the property:

I (θ̂)−1K×K = s2(x′x)−1 (10)

Note: the last column of I contains information about the
covariance (and variance) of the parameter s2. See Green 16.9.1.



Nested Hypothesis Testing

Consider a restriction of the form c(θ) = 0. A common restriction
we consider is

H0 : c(θ) = θ1 = θ2 = . . . = θk = 0 (11)

In an OLS framework, we can use F tests based off of the Model,
Total, and Error sum of squares. We don’t have that in the MLE
framework because we don’t estimate model errors. Instead, we
use one of three tests available in an MLE setting:

I Likelihood Ratio Test- Examine changes in the joint likelihood
when restrictions imposed.

I Wald Test- Look at differences across θ̂ and θr and see if they
can be attributed to sampling error.

I Lagrange Multiplier Test- examine first derivative when
restrictions imposed.

These are all asymptotically equivalent and all are NESTED tests.





The Likelihood Ratio Test (LR Test)

Denote θ̂u as the unconstrained value of θ estimated via MLE and
let θ̂r be the constrained maximum likelihood estimator. If L̂u and
L̂r are the likelihood function values from these parameter vectors
(not Log Likelihood Values), the likelihood ratio is then

λ =
L̂r

L̂u
(12)

The test statistic, LR = −2× ln(λ), is distributed as χ2(r) degrees
of freedom where r are the number of restrictions. In terms of
log-likelihood values, the likelihood ratio test statistic is also

LR = −2 ∗ (ln(L̂r )− ln(L̂u)) (13)



The Wald Test

This test is conceptually like the Hausman test we considered in
the IV sections of the course. Consider a set of linear restrictions
(e.g. Rθ = 0).
The Wald test statistic is

W =
[
R θ̂ − 0

]′ [
R[Var .(θ̂)]R ′

]−1 [
R θ̂ − 0

]
(14)

W is distributed as χ2(r) degrees of freedom where r are the
number of restrictions.
For the case of one parameter (and the restriction that it equals
zero), this simplifies to

W =
(θ̂ − 0)2

var(θ̂)
(15)



The Lagrange Multiplier Test (LM Test)
This one considers how close the derivative of the likelihood
function is to zero once restrictions are imposed. If imposing the
restrictions doesn’t come at a big cost in terms of the slope of the
likelihood function, then the restrictions are more likely to be
consistent with the data.
The test statistic is

LM =

(
∂L(R θ̂)

∂θ̂

)′
I (θ̂)−1

(
∂L(R θ̂)

∂θ̂

)
(16)

LM is distributed as χ2(r) degrees of freedom where r are the
number of restrictions. For the case of one parameter (and the
restriction that it equals zero), this simplifies to

LM =

(
∂L(θ̂=0)

∂θ̂

)2
var(θ̂)

(17)



Non-Nested Hypothesis Testing

If one wishes to test hypothesis that are not nested, different
procedures are needed. A common situation is comparing models
(e.g. probit versus the logit). These use Information Criteria
Approaches.

Akaike Information Criterion (AIC) :
−2ln(L) + 2K

Bayes/Schwarz Information Criterion (BIC) : −2ln(L) + Kln(N)

where K is the number of parameters in the model and N is the
number of observations. Choosing the model based on the lowest
AIC/BIC is akin to choosing the model with best adjusted R2-
although it isn’t necessarily based on goodness of fit, it depends on
the model.



Goodness of fit

Recall that model R2 uses the predicted model error. Here, while
we have errors, we don’t model them directly. Instead, there has
been some work related to goodness of fit in maximum likelihood
settings. McFadden’s Pseudo R2 is calculated as

Psuedo R2 = 1− ln(L(θ̂))

ln(L(θ̂constant))
(18)

Some authors (Woolridge) argue that these are poor goodness of
fit measures and one should tailor goodness of fit criteria for the
situation one is facing.


	Introduction
	A Monte Carlo Example
	MLE Setup
	OLS and MLE

	Properties of MLE
	Inference
	Nested Hypothesis Testing
	Non-Nested Hypothesis Testing
	Goodness of Fit

