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Notation

Use the same setup as before, with the linear model

Yit = Xitβ + ci + εit (1)

where Xit is a 1× K + 1 vector of independent variables. Here we
make our “usual assumptions”:

Assumption 1: E [εit |Xi1, . . . ,XiT , ci ] = 0

Assumption 2: E [εiε
′
i ] = σ2IT



What about E (X′c)?

In the fixed effects model, we do not have to make assumptions
about whether unobserved heterogeneity is correlated with our
independent variables. So it can handle this case:
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Method 1: The Dummy Variable Estimator

Add an N × 1 dimensional time invariant vector, called Z to the
regression model, where Z looks like this for observation N = 1

Z1 =
[
1 . . . 0

]
(2)

Using this approach, we can write the estimating equation as

Yit = Xitβ + Zic + εit (3)



Just an OLS Estimator

min
c,b

S(b) = (Y − Xb− Zc)′ (Y − Xb− Zc) (4)

To see this consider X = [], and only the fixed effects dummies are
included. In that case,

ĉi =
T∑
t=1

Yit

T
(5)

Having variance σ2

T . Note this does not approach zero as N →∞



Lots of ci ’s to estimate and not consistent

The variance of ε, σ2 is

1

NT − (K + 1)− N
ˆεdv
′ ˆεdv (6)

where
ε̂dv = (Y − Xb− Zc) (7)

Besides the consistency problem, this estimator requires the
identification of (N − 1) + K + 1 parameters (and inverting an
(N − 1)× K + 1) square matrix.



Method 2: The Demeaning Estimator

To overcome the consistency problems with the dummy variable
estimator, most statistical packages employ the “Demeaning
Estimator”. This estimator does not fit a constant for each cross
section unit N but importantly, it does not merely put the
unobserved heterogeneity effect ci into the error term.
To proceed, define

Ȳi =
1

T

T∑
t=1

Yit and X̄i =
1

T

T∑
t=1

Xit (8)

and writing the deviations from the means for X and Y as

Ÿit = Yit − Ȳi and Ẍit = Xit − X̄i (9)



The Demeaning Estimator, cont.

We can recover the demeaning estimator (bd) for β by OLS on the
demeaned data as

bd = (Ẍ′Ẍ)−1Ẍ′Ÿ (10)

Sometimes also referred to as the “With-In Estimator”.
The “Between” estimator uses only variation between cross section
units. It is recovered by the regression Ȳi = X̄iβ + ci + ui



Standard errors from the Simple OLS approach needs a
little tweaking to be correct

While the regression estimates are unbiased, since E (ε̈|Xi ) = 0, the
standard variance covariance matrix from simple OLS is not
correct. To see this, recall that

E [ε̈it ] =E [(εit − ε̄i)
2] = E [ε2it − 2εit ε̄i + ε̄i

2] (11)

=σ2 + σ2/T − 2σ2/T (12)

=σ2(1− 1/T ) (13)

and

E [ε̈it ε̈is ] =E [(εit − ε̄i )(εis − ε̄i )] (14)

=0− σ2/T − σ2/T + σ2/T (15)

=− σ2/T (16)



Demeaning Estimator Parameter Variance Covariance
Matrix

Var(bd|x) =E [(bd − b)(bd − b)′|x ] (17)

=E [(Ẍ ′Ẍ )−1Ẍ ′Ÿ − β)(Ẍ ′Ẍ )−1Ẍ ′Ÿ − β)′] (18)

=E [(Ẍ ′Ẍ )−1Ẍ ′(Ẍβ + ε̈)− β)(Ẍ ′Ẍ )−1Ẍ ′(Ẍβ + ε̈)− β)′]
(19)

=σ2uE [(Ẍ ′Ẍ )−1] (20)

σ̂2u =
(Ÿ − Ẍβ)′(Ÿ − Ẍβ)

N(T − 1)− (K + 1)
(21)



Method 3: First Differences

Recall the first differencing approach we discussed back in the
introduction. Suppose that for each individual, we have a panel of
two periods (t = 1, 2). Apply a differencing approach for each
individual i to rid the model of ci , since

∆yi =β (xi2 − xi1) + (ci − ci ) + (εi2 − εi1) (22)

=∆xiβ + ∆εi (23)



Then, we have another way of estimating the model that

Rids the model of the ci

But does not put them in the error term

The estimating equation becomes:

∆y = ∆xβ + ∆ε (24)

Having estimates equal to

bfd = (∆x′∆x)−1∆x′∆y (25)

These are all equivalent methods for T = 2- that is, you will
recover the same β estimates.



3 ways to estimate, which one to use?

If T = 2, these will all yield exactly equivalent results for the
parameters and the variance/covariance matrices.

Demeaning is preferred in most cases since it does not require
the estimation of N constants



Consider the following small dataset on N=2 and T=3

Person Year Wage Education Experience Training

1 2000 12 12 5 0
1 2001 15 12 6 1
1 2002 15 12 7 1
2 2000 25 16 0 0
2 2001 27 16 1 0
2 2002 30 16 0 1

For each of the 3 methods: Dummy Variable Estimator,
Demeaning Estimator, and the First Differences Estimator
construct the matrix of independent variables for the model.



Testing for Endogeneity

Steps:

Partition your matrix of explanatory variable for each
individual as xi = [xi1 xi2]. Note that xi1 is the subset of
exogenous independent variables and xi2 is the the potentially
endogenous explanatory variable having an instrument zi2.

Run the relevancy test regression

∆xi2t = ∆xi1ta + ∆zi2tb + ∆uit , t = 2, ..T (26)

and recover ∆ûit

As in the endogeneity chapter,

∆yit = ∆xitβ + ∆ûitδ + ψ (27)

And test for H0 : δ = 0. Rejecting H0 is a strong signal of an
endogeneity problem.



OLS versus RE

This test relies on our finding that

lim
σ2
c→0

Ω =
1

σ2ε
INT×NT (28)

Restricting σ2c = 0 means the model can’t fit the data as well, so
the test stata does (the Breusch Pagan LM test) checks to see
how much our predictive power is degraded due to the restriction.
I am being intentionally vague since this is a Maximum
Likelihood-based test (have not covered yet).

This tests

H0: σ2c = 0⇒ Pooled OLS appropriate
H1: σ2c 6= 0⇒ Random Effects Appropriate



Fixed Versus Random Effects

The critical difference between the random and fixed effects
approaches is whether ci is correlated with xit . If it is, then the
random effects approach, which simply puts ci in the error term
will lead to biased estimates relative to the fixed effects estimator.
As in the Chapter on endogeneity, we need to test to see how
“different” the two estimated β vectors are and to do this, we use
the Hausman test.



Hausman Test

H = (bRE − bFE )′
[

ˆVAR(bRE )− ˆVAR(bFE )
]−1

(bRE − bFE ) (29)

is distributed with χ2
M , and M are the degrees of freedom in the

model.

This tests
H0: E [x′c = 0]⇒ E[bre] = E[bfe] = β ⇒ RE
H1: E [x′c 6= 0] so E[bre] 6= E[bfe] = β ⇒ FE



When to use Pooled OLS, RE, FE

Pooled OLS Estimator: When the unobserved heterogeneity is
not present. All assembly line workers receive the same
training, are more or less of the same background, and only
workers of a certain skill level are retained. Therefore,
productivity rates only vary randomly across people.

Random Effects: Sequential measurement of astronomical
phenomena. We observe a star day in a day out and make
every known correction to the measurement of its position.
That position may have measurement error and the error may
contain a piece that varies day in and day out and the other
piece may shift the error in a systematic way across
observation.



When to use Pooled OLS, RE, FE

Fixed Effects: Almost all examples from economics are a fixed
effects story. Aid received by recipient countries probably
depend on unobserved factors specific but invariant through
time, that are also correlated with other recipient country
factors. Unobserved factors on aid allocation by donors
related to quality of aid implementation, and this is correlated
with democratic institutions.
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